
Previous Article
Global attractors for damped semilinear wave equations
 DCDS Home
 This Issue

Next Article
Preservation of spatial patterns by a hyperbolic equation
Recent results in contact form geometry
1.  Hill Center for the Mathematical Sciences, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 088548019, United States 
Ideally, this homology would be generated by a part of the Morse complex of the variational problem which would involve only periodic orbits. Because of the lack of compactness, it has some additional part which we had characterized in an earlier work [5].
Taking a variant of this approach, we give here a much more restrictive characterization of this additional part which should allow to compute it precisely.
This should indicate that the lack of compactness, seen as creation of additional punctures in the pseudoholomorphic approach, is much more limited than what would be theoretically allowed and leaves hope that it can be completely computed. The proof of all our claims will be published in [6].
[1] 
Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semihomogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 809828. doi: 10.3934/dcds.2000.6.809 
[2] 
Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 165174. doi: 10.3934/dcds.2000.6.165 
[3] 
Begoña Alarcón, Víctor Guíñez, Carlos Gutierrez. Hopf bifurcation at infinity for planar vector fields. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 247258. doi: 10.3934/dcds.2007.17.247 
[4] 
A.M. Krasnosel'skii, Jean Mawhin. The index at infinity of some twice degenerate compact vector fields. Discrete & Continuous Dynamical Systems, 1995, 1 (2) : 207216. doi: 10.3934/dcds.1995.1.207 
[5] 
Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 353372. doi: 10.3934/dcdsb.2014.19.353 
[6] 
Isaac A. García, Jaume Giné. Nonalgebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems, 2004, 10 (3) : 755768. doi: 10.3934/dcds.2004.10.755 
[7] 
XiaoSong Yang. Index sums of isolated singular points of positive vector fields. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 10331039. doi: 10.3934/dcds.2009.25.1033 
[8] 
Kensuke Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021122 
[9] 
Ferruh Özbudak, Burcu Gülmez Temür, Oǧuz Yayla. Further results on fibre products of Kummer covers and curves with many points over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 151162. doi: 10.3934/amc.2016.10.151 
[10] 
Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure & Applied Analysis, 2008, 7 (6) : 14151428. doi: 10.3934/cpaa.2008.7.1415 
[11] 
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 481493. doi: 10.3934/dcds.2009.25.481 
[12] 
Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 36233638. doi: 10.3934/dcds.2016.36.3623 
[13] 
Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems  S, 2013, 6 (3) : 619635. doi: 10.3934/dcdss.2013.6.619 
[14] 
Marcelo R. R. Alves. Positive topological entropy for Reeb flows on 3dimensional Anosov contact manifolds. Journal of Modern Dynamics, 2016, 10: 497509. doi: 10.3934/jmd.2016.10.497 
[15] 
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615648. doi: 10.3934/jmd.2007.1.615 
[16] 
Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 12311246. doi: 10.3934/dcds.2013.33.1231 
[17] 
BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85129. doi: 10.3934/jgm.2013.5.85 
[18] 
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 49434957. doi: 10.3934/dcds.2021063 
[19] 
Nazar Arakelian, Saeed Tafazolian, Fernando Torres. On the spectrum for the genera of maximal curves over small fields. Advances in Mathematics of Communications, 2018, 12 (1) : 143149. doi: 10.3934/amc.2018009 
[20] 
Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107120. doi: 10.3934/amc.2012.6.107 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]